

Abstract

Video frame interpolation (VFI) is a fundamental vision task that aims to synthesize several frames between two consecutive original video images. Most algorithms aim to accomplish VFI by using only keyframes, which is an ill-posed problem since the keyframes usually do not yield any accurate precision about the trajectories of the objects in the scene. On the other hand, event-based cameras provide more precise information between the keyframes of a video. Some recent state-of-the-art event-based methods approach this problem by utilizing event data for better optical flow estimation to interpolate for video frame by warping. Nonetheless, those methods heavily suffer from the **ghosting effect**. On the other hand, some of kernelbased VFI methods that only use frames as input, have shown that **deformable convolutions**, when backed up with **transform**ers, can be a reliable way of dealing with long-range depen**dencies.** We propose event-based video frame interpolation with attention (E-VFIA), as a lightweight kernel-based method. E-VFIA fuses event information with standard video frames by deformable convolutions to generate high quality interpolated frames. The proposed method represents events with high temporal resolution and uses a multi-head self-attention mechanism to better encode event-based information, while being less vulnerable to blurring and ghosting artifacts; thus, generating crispier frames. The simulation results show that the proposed technique outperforms current state-of-the-art methods (both frame and event-based) with a **significantly smaller model size**.

Main Contributions

- E-VFIA, the first kernel-based algorithm to utilize deformable convolutions to **fuse event-based information and standard images** for video frame interpolation with events.
- Significant improvement (up to 1.04dB) against the state-of-the-art methods that use only key-frames and events together with key-frames.
- Model has approximately 2.07 million parameters.
- Using voxel grids with higher temporal resolutions improves performance.
- Utilization of both temporal and spatial pooling operations to associate fast-moving objects between consecutive images.

E-VFIA : Event-Based Video Frame Interpolation with Attention

Onur Selim Kılıç, Ahmet Akman, A. Aydın Alatan

METU Center for Image Analysis (OGAM) Ankara, TURKEY

METU OGAM

Input	#Params (M)	PSNR (dB)	SSIM
Frames	42.4	31.72	0.9469
Frames	29.0	32.08	0.9449
Frames Events	72.2	28.36	0.9320
Frames Events	53.9	28.56	_
Frames Events	2.07	32.23	0.9581

Input	#Params (M)	PSNR (dB)	SSIM
Frames	42.4	27.642	0.8729
Frames	29.0	28.00	0.8767
Frames Events	72.2	23.97	0.7838
Frames Events	53.9	_	_
Frames Events	2.07	29.04	0.8771